Role of surface oxides in the formation of solid-electrolyte interphases at silicon electrodes for lithium-ion batteries.

نویسندگان

  • Kjell W Schroder
  • Anthony G Dylla
  • Stephen J Harris
  • Lauren J Webb
  • Keith J Stevenson
چکیده

Nonaqueous solvents in modern battery technologies undergo electroreduction at negative electrodes, leading to the formation of a solid-electrolyte interphase (SEI). The mechanisms and reactions leading to a stable SEI on silicon electrodes in lithium-ion batteries are still poorly understood. This lack of understanding inhibits the rational design of electrolyte additives, active material coatings, and the prediction of Li-ion battery life in general. We prepared SEI with a common nonaqueous solvent (LiPF6 in PC and in EC/DEC 1:1 by wt %) on silicon oxide and etched silicon (001) surfaces in various states of lithiation to understand the role of surface chemistry on the SEI formation mechanism and SEI structure. Anhydrous and anoxic techniques were used to prevent air and moisture contamination of prepared SEI films, allowing for more accurate characterization of SEI chemical stratification and composition by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) depth profiling. Additionally, multivariate statistical methods were used to better understand TOF-SIMS depth profiling studies. We conclude that the absence of native-oxide layer on silicon has a significant impact on the formation, composition, structure, and thickness of the SEI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations.

First-principles calculations were performed to investigate the electrochemical stability of lithium solid electrolyte materials in all-solid-state Li-ion batteries. The common solid electrolytes were found to have a limited electrochemical window. Our results suggest that the outstanding stability of the solid electrolyte materials is not thermodynamically intrinsic but is originated from kine...

متن کامل

Electrode-electrolyte interface in Li-ion batteries: current understanding and new insights.

Understanding reactions at the electrode/electrolyte interface (EEI) is essential to developing strategies to enhance cycle life and safety of lithium batteries. Despite research in the past four decades, there is still limited understanding by what means different components are formed at the EEI and how they influence EEI layer properties. We review findings used to establish the well-known m...

متن کامل

An Effective Nitrogen Doping Technique for Improving the Performance of Lithium Ion Batteries with CNT Based Electrodes

Lithium ion batteries are among the most used rechargeable batteries in the world. Carbon nanostructures including carbon nanotubes (CNTs) are considered as important electrode materials for this kind of batteries. Therefore improving the performance of these carbon based electrodes in Lithium ion batteries is an important issue and attracts much attention in the battery community. In this manu...

متن کامل

Understanding the surface modification mechanism of electrolyte additives on silicon anodes in Li-ion batteries

Silicon has been widely considered as the next generation anode material for lithium-ion batteries, due to its substantially higher capacity compared to conventionally used graphite. However, silicon-based electrodes suffer from problems such as poor capacity retention and low coulombic efficiency. Significant amount of work has been devoted to improve the performance of silicon electrodes. Amo...

متن کامل

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries

Undesired electrode-electrolyte interactions prevent the use of many high-energy-density cathode materials in practical lithium-ion batteries. Efforts to address their limited service life have predominantly focused on the active electrode materials and electrolytes. Here an advanced three-dimensional chemical and imaging analysis on a model material, the nickel-rich layered lithium transition-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 23  شماره 

صفحات  -

تاریخ انتشار 2014